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Abstract

The use of entropy minimization and spectral dissimilarity is applied to three nuclear magnetic resonance (NMR) data sets. The
data sets contain 2, 2, and 3 observables each. It was found that without any a priori information the sets of pure component spectra
underlying the NMR spectroscopic observations could be extracted. These successful spectral resolutions suggest that a combined
entropy minimization and spectral dissimilarity approach can be further developed for even larger NMR data sets containing a lar-
ger number of observables. Brief comparison to DECRA and PMF curve resolution results is also presented.
� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Various methods to process diffusion ordered NMR
data have been developed so far, such as Levenberg–
Marquadt (L–M), DISCRETE, SPLMOD, CONTIN,
and maximum entropy method (MaxEnt) [1,2], with
the main goal to transform NMR data sets, which are
stack plots of attenuated spectra, into 2D spectra with
chemical shifts on one axis and the distribution of diffu-
sion coefficients on the other. However, when there is se-
vere overlap of NMR peaks, these methods are usually
not good alternatives. Multivariate data of the analysis,
such as the popular self-modeling curve resolution
(SMCR) methods can overcome this limitation, since
the goal of SMCR is to isolate the NMR peaks for each
individual species.

In recent years, the usefulness of SMCR methods to
analyze spectroscopic data has become widely recog-
nized. With the aid of SMCR, it is possible to eliminate
the tedious separation of multi-component mixtures be-
fore some or even all the unknown components can be
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identified and characterized. Based on the mixture
spectral data alone, one can determine the number of
underlying components, extract their pure component
spectral information, and obtain relative concentration
profiles.

Various SMCR methods have been suggested in the
past few years to elucidate NMR data. These include
the applications of multivariate curve resolution based
on alternating least-squares optimisation (MCR-ALS)
[3,4], direct exponential curve resolution algorithm
(DECRA) [5], positive matrix factorisation (PMF) [6],
non-iterative methods based on principal component
analysis (EFA, WFA, and HELP) and a constrained
key variable regression (CKVR) [7], and Simplisma [8].
SMCR methods are sometimes also referred to as com-
plete band shape methods in the NMR literature [1].
However, until now, information entropy minimization
concepts have not been applied to NMR data to recover
pure component spectra, although such concepts have
been applied for NMR phase-correction [9]. Thus, in
this paper, this approach is described and its applicabil-
ity to NMR data is investigated.

The concept of Shannon�s information entropy can
be defined as a measure of choice and uncertainty
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[10], in which uncertainty means the random and disor-
der information. A clearer definition of entropy was la-
ter given by Weaver, Shannon�s collaborator. He
defined it as: ‘‘in the physical sciences, the entropy
associated with a situation is a measure of the degree
of randomness or of ‘‘shuffled-ness’’ if you will, in
the situation; and the tendency of physical systems to
become less and less organized, to become more and
more perfectly shuffled. . .’’ [11]. Therefore by this defi-
nition, lowering information entropy will generate the
reverse effects, and a more organized and simpler sys-
tem is obtained. In application to curve resolution, it
is assumed that the recovered pure component spectra
have the least entropy compared to the experimental
mixture spectra. The recovered pure component spec-
trum will have simpler and less line shape and thus,
it has smaller entropy value. In other words, minimiz-
ing entropy localizes the spectral information around
the major bands and maximizes the number of zero ele-
ments in the recovered spectrum.

The application of entropy minimization approach to
resolve pure component spectra was initiated by Sasaki
et al. [12,13]. Later, this approach was employed by
Brown and Harper [14] to resolve mass spectroscopic
data. Zeng and Garland [15] successfully revised Sasa-
ki�s model to allow curve resolutions from mixtures con-
sisting of highly overlapping spectral features. It was
found that a fourth order derivative instead of a second
order derivative of the estimated absorptivity facilitated
better spectral resolution. Also, Pan et al. [16] applied
various entropy minimization models to piecewise con-
tinuous infrared spectral data from a two-component
mixture of organometallics having highly overlapping
spectral features.

However, when entropy minimization alone was em-
ployed to resolve large-scale multi-component systems
with extremely overlapping spectral features, there was
a tendency for the algorithms to generate repetitive spec-
tral patterns. Additional functions or constraints are
therefore needed to obtain proper resolution. Effendi
and Garland [17] proposed some objective functions
that combine the use of entropy minimization and spec-
tral dissimilarity to overcome this problem. It was suc-
cessfully applied to a synthetic seven-species data set.
Later, Chen et al. [18] also successfully applied a similar
approach to recover pure component spectra from in
situ FTIR reaction spectral data, which were collected
from a series of homogeneous rhodium catalyzed hydro-
formylations of isoprene.

Three different pulsed gradient spin echo (PGSE) nu-
clear magnetic resonance (NMR) data sets whose con-
centrations profiles decay exponentially were used as
standard data sets [19]. Windig and Antalek [5] con-
ducted the experiments and applied one of the variations
of generalized rank annihilation method (GRAM)
namely direct exponential curve resolution (DECRA)
to directly resolve the mixture data. The DECRA ap-
proach gave a unique curve resolution solution and
could be executed in a very short time. However, its
analysis demands the compounds having exponentially
concentration profiles.

Xie et al. [6] re-investigated these three NMR spectral
data sets using a least square approach namely positive
matrix factorization (PMF) to elucidate the pure com-
ponent spectra. Their investigation showed that PMF
could solve the analytical curve resolution problems.
The qualities of the spectral estimates were comparable
and consistent with those obtained from the DECRA
approach. No further reconstruction quality improve-
ment was obtained.

In the present contribution, an information entropy
approach similar to that previously used to analyze
FTIR spectral data is now employed to PGSE-NMR
data. Instead of using an inner product between spec-
tra, we use determinants of the covariance matrix to
calculate the degree of spectral dissimilarity. Good
pure-component spectral recovery is obtained. The
spectral resolution results are briefly compared to
those obtained using DECRA [5] and PMF [6]
techniques.
2. Computational aspects

In principle, this technique works through a combi-
nation of singular value decomposition (SVD) [20],
entropy minimization, spectral dissimilarity, and simu-
lated annealing approaches. It starts with data matrix
decomposition by SVD, followed by rotation of the
resulting basis vectors into physically meaningful pure
component spectra:

Dk�m ¼ Ck�sas�m þ ek�m: ð1Þ
Dk · m represents an experimentally measured spectral
data matrix, where k denotes the number of spectra
and m is the number of data channels or number of vari-
ables (e.g., wavenumber, ppm, Raman shift). The Dk · m

matrix arises from the product of a concentration matrix
Ck · s and the pure component spectra matrix as · m, and
ek · m is the experimental error matrix, where s denotes
number of observable species in chemical mixture.

Dk�m ¼ Uk�kRk�mV
T
m�m; ð2Þ

D̂k�m � Ĉk�sâs�m ¼ Uk�sRs�zT
�1
s�zTs�zV

T
z�m; k P z P s;

ð3Þ

Ĉk�s ¼ Uk�sRs�zT
�1
s�z ¼ Dk�mâ

T
m�s âs�mâ

T
m�s

� ��1
: ð4Þ

The consolidated datamatrixDk · m is then subjected to
SVD Eq. (2), to obtain its abstract orthonormal left and
right singular matrices Uk · k and VT

m�m and its singular
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matrix Rk · m. Furthermore, Dk · m can be approximated
by Eq. (3), where z is the number of right singular vectors
used for spectral reconstruction/transformation. Ts · z is
a rectangular transformation matrix that maps the vec-
tor-space of VT

z�m into âs�m, the matrix of averaged pure
component spectral estimates for the s species.T�1

s�z is then
a generalized inverse and Ĉk � s is the corresponding
expectation for concentrations calculated from Eq. (4).

âs�m ¼ Ts�zV
T
z�m: ð5Þ

The transformation of the z right singular vectors
into a set of pure component spectral estimates (Eq.
(5)) is associated with the global optimization of the
s · z elements in the T matrix, based on the proposed
non-linear constrained objective function. This objective
function includes the non-negative solutions of esti-
mated pure component spectra âs � m as well as the cor-
responding concentrations Ĉk � s, an entropy function,
and a spectral dissimilarity function.

2.1. Non-negative solutions

P ðâs�m; Ĉk�sÞ ¼ caF 1ðâmÞ þ ccF 2ðĈkÞ; ð6Þ
where

F 1ðâmÞ ¼
X
m

ðâmÞ2 8 âm < 0; ð7Þ

F 2ðĈkÞ ¼
X
k

ðĈkÞ2 8 Ĉk < 0; ð8Þ

ca ¼
0 F 1ðâmÞ < k1;

10 k1 6 F 1ðâmÞ < k2
104 F 1ðâmÞ P k2;

8><
>: ; ð9Þ

cc ¼ 103 8 F 2ðĈkÞ: ð10Þ
All admissible estimates for the pure component spectra
must ensure non-negativity in the estimated âs�m as well
as the associated concentrations Ĉk�s. However, soft
non-negativity constraints are imposed, in which slightly
negative estimates are still acceptable. ca and cc are pen-
alty coefficients for the constraints defined by Eqs. (9)
and (10), and k1 = 10�3 and k2 = 10�2 are bounds for
the pure-component spectra-estimate constraints de-
fined in Eq. (9).

2.2. Entropy function

H ¼ �
X
s

X
m

hsm lnðhsmÞ: ð11Þ

To measure the degree of spectral simplicity, a Shannon
[21] type information entropy function was employed.

hsm ¼
jâmsmjP m : ð12Þ

mjâsmj
The measure H is the information entropy, and hsv is a
discrete probability distribution function that can be de-
fined as the absolute value of the derivative of the esti-
mated spectrum in an L1 norm.

The exponent m is the degree of spectral differentia-
tion, either first derivative, second derivative or fourth
derivative. The degree of differentiation will depend on
the noise level of the mixture spectra acquired. Higher
derivatives may be employed if the signal to noise ratio
(S/N) of mixture spectrum is high. However, if noise
intensity is quite high (S/N is low), it is preferable to
use a lower degree of differentiation.
2.3. Dissimilarity function

Spectral dissimilarity can be quantified as a distance
measure involving the pure component spectral esti-
mates. Since it can be assumed that each pure compo-
nent should have its own distinct or unique pure
spectrum, maximizing the dissimilarities among the
reconstructed pure component spectra can be useful—
however, over-resolution may also occur. A distance
measure is employed to prevent identical spectral recon-
structions from occurring since s spectra are resolved
simultaneously.

1a ¼ jâs�mâ
T
m�sj: ð13Þ

In the current study, the distance measure is represented
by a determinant of the covariance matrix of L2 norm
resolved spectral estimates âs � m.

2.4. Objective function

Min F obj ¼ H þ P � k1a w:r:t: T s � z: ð14Þ
The above non-negativity, signal entropy, and dissimi-
larity criteria form the basis for the general objective
function used in the current study, where k is the
weightage for the determinant of the covariance ma-
trix. The purpose of a weightage is to balance the mag-
nitudes of the entropy function and determinant
values.

The final estimate of âs � m, corresponds to the global
minimum value of the proposed objective function. This
is performed by a global optimization method, specifi-
cally Corana�s Simulated Annealing [22]. It is widely ac-
cepted that Corana�s SA is a reliable tool for finding
globally optimal solutions.

In brief, it should be highlighted that the data analy-
sis execution is simple. All parameters in this optimiza-
tion are fixed, except the number of components, s,
and the number of eigenvectors, z, to be rotated, which
are the open variables. The algorithm took only a few
minutes with the present data set, and easily converged
from the initial right singular vectors to the final recov-
ered spectra. Some limitations of the present algorithm
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for very large values of s have been mentioned before
[17,18].
Fig. 1. Experimental mixture spectra (2–13) of the gelatin and TX-100.
This data set is available in [19]. These mixture spectra are the only
information we have about the mixture components and are the basis
for curve resolution.
3. Experiments

Three sets of samples were analyzed from the 1H
PGSE-NMR experiments [19], and full details of the
experimental method can be found in [5]. Briefly, the
first set was a mixture of 0.1% w/w TX-100 (a non-ionic
surfactant) in water, and 5% w/w gelatine in water. In
this experiment, 20 mixture spectra were measured with
4095 data points each (range �0.58 to 8.1 ppm). The
second set was a mixture of 0.15% w/w di-(C6-Glu) in
water which is also a non-ionic surfactant, and 5% w/
w gelatine in water. Again 20 mixture spectra were taken
with 4095 data points each (range –0.58 to 8.1ppm). The
third sample was a mixture of two components, 2-chlo-
ropropionic acid 0.94% w/w and 2-aminobenzothiozole
1.2% w/w, in dimethyl sulfoxide-d6 (DMSO). In this
experiment, 15 spectra were recorded with 6218 points
each (range 0.49–8.24).

However, not all measured data were used for spec-
tral reconstruction. According to Windig and Antalek,
the first spectrum and/or a few spectra were excluded
in the data analysis because these spectra were only from
water resonance or they deviated substantially from the
other spectra. Therefore, only spectra 2–13, spectra 2–
11, and spectra 2–15 were used for mixtures 1–3,
respectively.
Fig. 2. The first four right singular vectors of the gelatin and TX-100
mixture data.
4. Results and discussion

Because the signal-to-noise ratio of these three data
sets was quite low, the spectral resolution of mixture
spectra was performed using a low derivative entropy
measure, namely a first derivative measure.

4.1. Mixture gelatin and TX-100

The 12-mixture spectra were consolidated and were
decomposed by SVD. Fig. 1 shows the spectra 2–13
and Fig. 2 shows the first four VT vectors. It is visually
very clear that only the first two VT vectors are physi-
cally important and have meaningful information. Nev-
ertheless, we also performed an F test on the generated
singular values, and it predicts only two observable
components. Beyond the second vector, all vectors ap-
pear to consist almost entirely of white noise. Thus for
rotation, only the first 2 vectors were subject to an entro-
py-minimized objective function. In addition, the DE-
CRA approach to resolve pure component spectra was
also used. The DECRA MATLAB function was ob-
tained together with the downloadable PGSE-NMR
spectral data sets.
The reference spectra, the spectral estimates obtained
via entropy minimization and the DECRA results are
presented in Fig. 3. It is seen that the spectral estimates
of gelatin and TX-100 were well resolved through the
entropy-minimized approach.

Since mixture spectra are formed from a bilinear
structure as described in Eq. (1), relative concentrations
of gelatin and TX-100 could be calculated directly using
a pseudo inverse approach, and their profiles are shown



Fig. 4. Relative concentration profiles of gelatin and TX-100 in time
series.

Fig. 3. Pure component spectra of gelatin and TX-100 obtained from experimental references and curve resolution via entropy minimization and
DECRA (ordinate: normalized intensity; abscissa: ppm).
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in Fig. 4. The relative concentrations of these two com-
pounds decay exponentially in time.

4.2. Mixture gelatin and di-(C6 Glu)

Similar to the previous data set, 11 mixture spectra
were consolidated and decomposed using SVD. As only
the first 2 VT vectors were significant, these two vectors
accordingly were transformed into two pure spectral
estimates. The reference spectra, spectral estimates ob-
tained via entropy minimization and DECRA were pre-
sented in Fig. 5. Although, both the entropy
minimization and DECRA methods provide rather
good spectral estimates of the gelatin, lower quality esti-
mates of di-(C6 Glu) are obtained. It was obvious from
the reference spectra that these two components were se-
verely overlapped. However, clear identification still can
be observed.

4.3. Mixture of 2-aminobenzothiozole and

2-chloropropionic acid in DMSO

This spectral data set was actually a four component
system involving DMSO solvent and water. However,
after consolidation of these 14 mixture-spectra and data
decomposition through SVD, the VT matrix revealed
that only the first 3 VT vectors contain real signal infor-
mation. The fourth VT vector and beyond only consisted
of noise signals. As noted elsewhere, this problem sug-
gested that the current system was rank-deficient since
its data matrix rank was apparently lower than number
of components [5]. Thus, only three vectors were taken
and square rotation entropy minimization was imposed.
The spectral estimates obtained via entropy minimiza-
tion and DECRA are presented in Fig. 6.

The first spectral estimate shows a superposition of
DMSO and water pure component spectra. Such an esti-
mate indicates that there is a collinearity problem. In
addition, none of the estimates appear to be very pure.
This suggests that there was a better experimental design
would have been useful. Since the reference pure compo-
nent spectra were not provided for these compounds, a
quantitative evaluation of spectral estimates could not
be performed. However, Fig. 6 shows that similar recon-
struction results were obtained from DECRA and en-
tropy minimization.



Fig. 5. Pure component spectra of gelatin and di-(C6-Glu) obtained from experimental references and curve resolution via entropy minimization and
DECRA (ordinate: normalized intensity; abscissa: ppm).

Fig. 6. Pure component spectral estimates of DMSO + water, 2-aminobenzothiozole, and 2-chloropropionic acid obtained via entropy minimization
and DECRA (ordinate: normalized intensity; abscissa: ppm).
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4.4. Comparison study of entropy minimization,
DECRA, and PMF curve resolution results

From the previous three spectral reconstruction re-
sults, it is clear that the entropy minimization technique
is useful for 1H PGSE-NMR mixture spectra. More-
over, since the reference spectra of the first two data sets
are provided, the resolution quality of each curve resolu-
tion technique can be computed and compared. Correla-
tion coefficients were used to compare the resolved and



Table 1
Correlation coefficients for the mixture gelatin and TX-100 obtained
via DECRA, PMF, and entropy methods

Component DECRA PMF Entropy

Gelatin 0.995 0.995 0.995
TX-100 0.930 0.930 0.973

Table 2
Correlation coefficients for the mixture gelatin and di-(C6 Glu)
Obtained via DECRA, PMF, and entropy methods

Component DECRA PMF Entropy

Gelatin 0.993 0.993 0.993
di-(C6 Glu) 0.800 0.794 0.834
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reference spectra. The correlation coefficients were cal-
culated using equation as follows:

rab ¼
P

jai:bij �
P

ai
P

bi

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
a2i �

P
aið Þ2

n

� �s P
b2i �

P
bið Þ2

n

� � ; ð15Þ

where rab is the correlation coefficient, ai and bi are the
reference and the reconstructed spectra, respectively.

The correlation coefficient is a number between �1
and 1 which measures the similarity degree between
two vectors. If the correlation coefficient is 0, it means
that there is no linear relationship between these two
vectors. If it is 1, the reference and estimate are identical
and if it is �1, the reference and estimate are mirror
images.

The correlation coefficients between the reference and
reconstructed pure component spectra obtained from
the DECRA, PMF, and entropy minimization ap-
proaches for the first two spectral data sets are presented
in Tables 1 and 2. However, the correlation coefficients
for the third spectral data set are not shown since refer-
ence spectra were not available.

It is clear from these two tables above that the corre-
lation coefficients for the gelatin compound derived ob-
tained from these three techniques are all exactly the
same. However, the correlation coefficients of TX-100
and di-(C6 Glu) obtained from the entropy minimiza-
tion approach are higher than those obtained via DE-
CRA and PMF. In addition, visual inspection of Figs.
3 and 5 shows the reconstruction qualities via entropy
minimization for these two components slightly better
than DECRA.
5. Conclusion

The general applicability of entropy-minimized curve
resolution techniques has been re-confirmed, by success-
ful extension from FTIR to NMR spectroscopy. Specif-
ically, the spectral estimates from NMR data are
particularly good. Moreover, the resolution results from
the current NMR data sets verify that the entropy mini-
mization approach produces spectral estimates compara-
ble to or better than the DECRA and PMF algorithms.
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